PROCESSES IN SPACE

Luca CARDELLI PHILIPPA GARDNER

Microsoft Research Cambridge Imperial College London

ABsTrACT. We introduce a geometric process algebra based on affine geometry, with the aim of
describing the concurrent evolution of geometric structures in 3D space. We prove a relativity
theorem stating that algebraic equations are invariant under rigid body transformations.

KEeEvyworDps: Process Algebra, Affine Geometry

1. INTRODUCTION

Context and Aims. Process Algebra provides a fundamental study of interacting computing
systems. From initial work based on simple handshake interaction, the field has expanded to
model systems with dynamic interaction patterns [10], static spatial distribution [6], and nested,
topologically-changing distribution [2]. In applications to biological systems, interaction and dis-
tribution are sufficient to characterize well-mixed chemical systems subdivided into nested com-
partments, as are commonly found in cellular biology. There are many situations, however, both
in computer systems (in robotics and sensor networks) and in biological systems (in growth and
development) where a geometrical distance is also necessary beyond purely topological organization.

One of the key motivating examples of the r-calculus [10], for example, is the handover protocol
of mobile phones: a mobile phone is connected to a fixed tower, and receives a new frequency to con-
nect to a different tower. In actuality, the handover is based on the relative distance (signal power)
between the mobile device and the fixed towers, and hence the protocol depends on geometry. The
motivating examples of the Dpi calculus [6] and the Ambient Calculus [2] involve movement through
space, but lack a notion of distance. More challenging examples can be found in developmental
biology, which deals with the dynamic spatial arrangements of cells, and with forces and interac-
tions between them. Many computational approaches have been developed for modeling geometric
systems, including Cellular Automata, extended L-systems [12], and graph models, but few cover
complex geometry, dynamic interaction, and dynamic organization together. In particular, the
richness of interaction present in Process Algebra, is not found in other approaches.

We therefore start from Process Algebra and we extend it towards geometrical modeling, taking
inspiration from a well-developed body of formal work in developmental biology. Concretely, we
develop a calculus of processes located in 3-dimensional geometric space: 3n. While it may seem
in principle logical to ‘add a position (and possibly a velocity) to each process’, naive attempts
result in awkward formal systems with too many features: coordinates, position, velocity, identity,
extent, force, collision detection, communication range, and so on. In addition, application areas
such as developmental biology are challenging in that the coordinate space is not fixed: it effec-
tively expands, moves, and warps as an organism is developing, making approaches based on fixed
coordinate systems or grids awkward. Our aim is thus to begin incorporating flexible and general
geometric capabilities in Process Algebra, and among those we must certainly count the geometric
transformations of space.

2 PROCESSES IN SPACE

Other important concepts are present in this paper in embryonic form only. Time flow is needed
in addition to position to define speed, acceleration and force. Although there is causality in
3m, there is no time, and the forces we can express are therefore not quantitative. This can be
fixed by adapting any standard addition of time flow from the n-calculus to 3n, e.g. synchronous
or stochastic. With this approach, the time dimension remains with the evolution of processes,
and not with a geometric notion of space-time. Geometric objects, and the spatial extent of an
object, are not represented: each process is a point, and its spatial extent can be encoded only by
convention through the patterns of interactions with other processes. Spatial extent is an important
consideration, but it would entail potentially unbounded complexity, which again is likely to be
application specific. Membrane-based abstractions have been investigated in Process Algebra as
extensions of n-calculus and could be usefully integrated with geometry, to express notions such
as volume-dependent splitting of compartments. The most compelling applications will come from
situations where communication, transformations, and forces/extents are connected, such as in
developmental biology.

Contributions. In this paper, we introduce a geometric process algebra, called 3w, that com-
bines the interaction primitives of the n-calculus with geometric transformations. In particular, we
introduce a single new geometric construct, frame shift, which applies a 3-dimensional affine trans-
formation to an evolving process. This calculus is sufficient to express many dynamic geometric
behaviors, thanks to the combined power of Affine Geometry and Process Algebra. It remains a
relatively simple n-calculus, technically formulated in a familiar way, with a large but standard and
fairly orthogonal geometric subsystem. From a Process Algebra point of view, we add powerful
geometric data structures and transformations; standard notions of process equivalence give rise to
geometric invariants. From an Affine Geometry point of view, we add a notion of interacting agents
performing geometric transformations.

Introducing 3w. During biological development, tissues expand, split and twist, and there is no
fixed coordinate system that one can coherently apply. To capture examples such as these, it is
natural to turn to affine geometry, which is the geometry of properties that are invariant under
linear transformations and translations. Affine geometry already comprises a well-studied set of
fundamental geometric primitives. Our challenge is to choose how the geometry relates to the
processes living within it, by working out how to combine naturally these affine primitives with the
primitives of the n-calculus. How should the position of a process be represented? How should a
process move from one position to another? How should processes at different positions interact?

In 3m, processes have access to the standard affine basis consisting of the origin * and the
orthogonal unit vectors 1,,1,,7.; each process ‘believes’ this basis to be the true coordinate system.
However, geometric data is interpreted relative to a global frame A, which is an affine map. In
particular, what a process believes to be the origin, ¥, is actually A(¥), and this is seen as the
actual location of the process in the global frame. The true size and orientation of the basis vectors
is also determined by A, as they are interpreted as A(1;),A(1,),A(T.). The global frame A is
inaccessible to processes. Although processes can carry out observations that may reveal some
information about A, such as using dot product to compute the absolute size of 1., they have no
way to obtain other information, such as the value of A(¥).

Processes are positioned via a frame shift operation M[P], which is our main addition to the
n-calculus. If process M[P] is in a global frame A, and M evaluates to an affine map B, then P
is interpreted in the shifted global frame A o B. The process M[P]|N[Q)] therefore indicates that
processes P and @ are in different frames, with P shifted by M and @ by N. Conversely, the process

PROCESSES IN SPACE 3

MI[P]||M[Q] = M[P|Q] indicates that P and @ are in the same frame. Frame shift operations can
also be nested, with the process M[N;[P]|N2[Q]] indicating that P is in the frame shifted first by
N; and then M, whereas @ is shifted by Ny then M. Since M denotes a general affine map, frame
shift is more than just a change of location: it generalizes the Dpi [6] notion of multiple discrete
process locations to multiple process frames in continuous space. Processes interact by exchanging
data messages consisting of channel names or geometric data; such interactions are not restricted by
the distance between processes. Geometric data is evaluated in its current frame and transmitted
‘by value’ to the receiver. Consider an output !z(*) to input ?z(z) interaction on channel x:

P 2 Mx(+).QIN[?x(2).R] a— M[Q]IN[R{z\e}]

where M evaluates to B in the global frame A and * evaluates to € = Ao B(*). Technically,
this interaction across frame shifts is achieved via the equality:

P = lo(M[+]).M[Q]|?z().N[R]

which distributes the frame shifts throughout the process, thus exposing the output and input
for interaction. In addition to communication, processes can compare data values. If Ris z = +.R’
in our above example, then after interaction this process computes whether.A o B() = Ao C(*¥),
where C is the evaluation of NV in A, and evolves to R’ only if the original output and input processes
are at the same position.

Example 1. Distance between processes.

Let us assume that the global frame is just the identity map. Process P below is located at —1
on the z axis, because X applies a translation 7'(—7,) to it. Similarly, process @ is located at +1
on the = axis by Y. When P outputs its origin, the actual value being communicated is thus the
point (—1,0,0): this is a computed value that is not subject to any further transformation. Process
@ receives that value as x, and computes the size of the vector x— ¥ obtained by a point difference.
In the frame of @) that computation amounts to the size of the vector (—1,0,0)-(1,0,0), which is

2. Therefore, the comparison |z | = 2 succeeds, and process R is activated, having verified that
the distance between P and @ is 2.

X = T(-1,)[P] where P = !m(¥)

Y = T(1,)[Q] where Q= ?m(x).|zr—%|=2.R

Example 2. Force fields.

A force field is a process that repeatedly receives the location of an ‘object’ process (and, if
appropriate, a representation of its mass or charge), and tells it how to move by a discrete step.
The latter is done by replying to the object with a transformation that the object applies to itself.
This transformation can depend on the distance between the object and the force field, and can
easily represent inverse square and linear (spring) attractions and repulsions. By nondeterministic
interaction with multiple force fields, an object can be influenced by several of them. Here P* is
process replication (P* = P | P*) for repeated interaction with the field channel f:

Force = (7f(x,p)la(M{p}))* f is the force field channel; M{p}is a map
Object = (va)!f(z,¥).72(Y).Y[Object]

A uniform field (‘wind’): M{p} =T(1.)

A linear attractive field at ¢ (‘spring’): M{p} =T(3(q=p))

An inverse-square repulsive field at ¢ (‘charge’): M{p} = T((p=q)/|p=q|?)

4 PROCESSES IN SPACE

The ability to express force fields is important for modeling constraints in physical systems. For
example, by multiple force fields one can set up an arbitrary and time-varying network of elastic
forces between neighboring cells in a cellular tissue.

Example 3. Orthogonal bifurcation in lung development.

Lung development in mice is based on three splitting processes [9], which demon-
strate a relatively simple example of a developmental process. We show how to repre-
sent the third process (orthogonal bifurcation, Orth), which is a proper 3D process of
recursive tree growth, where bifurcations alternate between orthogonal planes.

Orth = 'C(*)(Mgo(%)[orlfh] | Mg()(—%)[a’rth])
Moo(9) = R(M(9)[1,],5) o M(9)
M) = Sc(3)oR(1.,9)0T(1,)

The output of the origin * to the ¢ channel at each iteration provides a trace of the
growing process that can be plotted. The transformation M () applies a translation T'(1,) by 1,
a rotation R(1,,9) by ¥ around 1., and a uniform scaling Sc(3) by 4. The transformation Moo (9)
first applies an M (%) transformation in the XY plane, and then applies a further 90° rotation
around the ‘current’ direction of growth, which is M (9)[f,], therefore rotating out of the XY plane
for the next iteration. Opposite 30° rotations applied recursively to Orth generate the branching
structure; note that because of parallel composition (‘|’) the tree grows nondeterministically.

2. PROCESSES

We introduce a process algebra, 3n, where 3-dimensional geometric data (points, vectors, and
affine maps, as well as channel names) can be exchanged between processes, and where processes
can be executed in different frames. This is a proper extension of n-calculus with by-value com-
munication of geometric data A, data comparisons A = A’.P, and frame shifting M[P]. By-value
communication over named channels is achieved via an evaluation relation A 4+¢, which evaluates a
data term A to a data value € relative to a global frame A. The data comparison process A = A’. P
evaluates to P if A and A’ evaluate to the same value. Frame shifting is the characteristic construct
of 3m: the frame shift process M[P] means running the process P in the global frame A shifted by
the affine map obtained by evaluating M.

The syntax of processes depends on the syntax of data A, given in Section 3. For now, it is
enough to know that each data term A has a data sort o, where the channel variables z. € Var,
have sort ¢, and the sort of M[A] is the sort of A.

Definition 4. Syntax of Processes

A = ozl .. M[A] Data terms
o ou= Tex(@) | lx(A) | A=, A Action terms
P = 0|nP|P+P |P|P|(va)P|P*| M[P] Process terms

An action term 7 can be an input ?,x(x’), an output ;x(A), or a data comparison A =, A’
The input and output actions are analogous to m-calculus actions, where the input receives a data
value of sort o along channel x which it binds to x’, and the output sends the value of A with sort
o along x. Process interaction only occurs between inputs 7., and outputs !, of the same sort o.
A comparison of two data terms of sort o blocks the computation if the terms do not match when
evaluated using 4. The syntax of actions is restricted by sorting constraints: the z in ?,x(x’)
and !,2(A) must have a channel sort c; the z’ in ?,2(2’) must have sort o; the A in !,2(A) must

PROCESSES IN SPACE 5

have sort o; and the A,A’ in A =, A’ must have sort o. We often omit sorting subscripts, and we
assume that variables of distinct sorts are distinct.

Process terms look like standard m-calculus terms. We have the standard empty process 0, the
action process n.P for action n (when © =?z(z’), the 2’ binds any free z’ in P), choice P + P’,
parallel composition P|P’, channel restriction (vz)P where x has sort ¢ (the = binds any free = in
P), and replication Px. In addition, we have the non-standard process frame shifting M[P], which
represents a shifted frame given by M. We shall see in Section 3 that channel variables do not
occur in M; hence, in (va) M[P], there is no possibility that any variable in M is bound by z.

We now give a reduction relation on process terms, written 4—, which relates two processes
relative to the global frame A. Reduction depends on an evaluation relation A 4 —e¢ from data
A to values € in a global frame A, discussed in Section 3. The reduction rules for process terms
are simply the rules of a by-value n-calculus with data terms A. Data evaluation is used in the
(Red Comm) and (Red Cmp) rules. Data comparison A =, A’.P requires the data evaluation
A4Y A’, meaning there is a data value € such that A 4—¢ and A’ g—e¢.

Definition 5. Reduction
(Red Comm) Ay—e = l,z(A).P+ P | 7,2(y).Q + Q' 4—P|Q{y\e}
(Red C'mp) AAY AN = A=, N .Py—P
(Red Par) Pp—@Q = P|Ra—Q|R
(Red Res) Pi—Q = (vz)Pa—(vz)Q
(Red =) PP=PPs—Q,Q=0Q = P4—Q

There is nothing specific in these rules about the use of the global frame A: this is simply handed
off to the data evaluation relation. There is also no rule for process frame shifting, M[P], which is
handled next in the structural congruence relation.

In the standard ‘chemical” formulation [1] of n-calculus, the structural congruence relation has the
role of bringing actions ‘close together’ so that the communication rule (Red Comm) can operate
on them. We extend this idea to bringing actions together even when they are initially separated
by frame shifts, so that the standard (Red Comm) rule can still operate on them. Therefore,
structural congruence, =, consists of the normal n-calculus rules plus additional rules for frame
shifting: the (= Map...) rules. These map rules essentially enable us to erase frame shifts from
the process syntax and to push them to the data. In this sense, process frame shift M[P] is an
illusion, or syntactic sugar, for a n-calculus with frame shift only on the data. However, frame shift
is important for modularity because, without it, we would have to modify the process code to apply
the frame to all the data items individually.

Definition 6. Structural Congruence (non-standard = Map rules)

(= Map) P=P = M[P]|= M[P’]

(= Map Cmp) MIA = A"P) = M[A] =, MIA]M(P]

(= Map Out) M[lx(A).P] = lyz(M[A]) MI[P]

(= Map In) M[?,x(y).P] = 7,2(y).M[P] (y ¢ fvo(M))
(= Map Sum) M[P+Q|=M[P } MIQ]

(= Map Par) M[P | Q] = M[P]| M[Q)]

(= Map Res) M{(va)P] = (va) M[P)

(= Map Comp) MIN[P]] = (M o M[N])[P]

Many other rules can be derived, e.g., for communication across frames shifts at different depths,
and for data comparison inside a local frame. In summary, the application of the structural congru-
ence rules allows us to ‘flatten’ the local frames so that the rules of reduction can be applied directly.

6 PROCESSES IN SPACE

There still remains the issue of correctness, or plausibility, of the new structural congruence rules.
This issue can be explored by analyzing the expected derived rules, as we briefly mentioned above,
and by establishing general properties of the whole system, as done in Section 4.

We have not discussed recursion, which was used in the introductory examples. However, recur-
sive definitions in n-calculus can be encoded, and this extends in 31 to recursive definitions under
frame shift by the ability to communicate transformations.

3. GEOMETRIC DATA

Geometric data consists of points, vectors and transformations, with the operations of affine ge-
ometry (see Appendix, and [5]). We are interested in three main groups of transformations over R3.
The General Affine Group GA(3) is the group of affine

. . . . General GA(3) Preserves distance
maps over R3, which include rotation, translation, re- ‘

Isometry and angles
flection, and stretching of space, and are indicated by General General
script letters A, B, C. Affine maps are presented as Scaling Deformation

pairs(A, p)where A is 3 x 3 invertible matrix represent-

ing a linear transformation, and p is a point in R3. The L3 & Slfgiwq
Euclidean Group E(3) is the subgroup of GA(3) where [Preserves volume and
AT = A~': namely, it is the group of isometries of R? the orig handedness
consisting of rotations, translations and reflections. The 0@) SEG)
Special Euclidean Group SE(3) is the subgroup of F(3)

where det(A) = 1: namely, the direct isometries consisting Reflection Translation

of rotations and translations, but not reflections. Elements Shearing Transformation

of SE(3) are known as the rigid body transformations, pre- Squishing SO(3) Rotation Groups

serving distances, angles, and handedness. An affine map
A has a canonical associated affine frame, namely the frame A(¥),A(1,),A(T,).A(1-); we therefore
refer to A itself as a frame.

We next introduce data terms A and data values €, and show how to compute data values relative
to a global affine frameA. FEach data term and value has a sorte € ¥ = {c,a, p,v,m}, denoting
channels, scalars, points, vectors, and maps respectively.

Definition 7. Data Values
The set of data values € € Val is the union of the following five sets:

o xe € Vale £ Vare are the channels;

o beVal, £ R are the scalars;

o g € Valp £ R3 are the points, which we write(z, y, z);

o w € Val, are the vectors, a set isomorphic to Val,
with a bijection 1: Valp — Val, with inverse |=1"1;
elements of Valy are written 1 (x,y, z);

o A€ Valy = {{A,p) € R3*3 x R3 | A~! exists} are the affine maps.

Definition 8. Data Terms

A = zclalpiv| M| MA] Data
a = xa|r| fla;) | vev’ | b (i € L..arity(f)) Scalars
p u= zp k| Uv+plg Points
v = v | Tl Ty T ip—Dlaviv+v vxv |w Vectors
M = x| (aij,a5) | Mo M | M1 A (4,7, k € 1..3) Maps

PROCESSES IN SPACE 7

Data terms consist of pure data terms, which form the ‘user syntax’, additional data values
b,q,w, A, which are inserted during by-value substitutions resulting from process interaction, and
variables x, € Var, of each sort ¢ € 3. Channels are regarded both as pure terms and values.
Each term A has the appropriate sort o; the sort of a data frame shift M[A] is the sort of A. The
substitution A{z\e} distributes over the structure of A, with base cases z{z\e} = ¢, y{z\e} =y
for y # x, and e {z\e} = ¢".

The scalar terms include the real number literals r, the dot product of vectors vev’, giving
the ability to measure distances and angles, and basic functions f(a;), i € l..arity(f), for real
arithmetic and trigonometry. The point terms include the origin () and the addition of a vector
to a point. The vector terms include the unit vectors (14, 1y, 12), point subtraction, the vector
space operations (-,+), and cross product v x v’, which gives the ability to generate out-of-plane
vectors, to measure areas and volumes, and to detect handedness.

The map terms include the base map terms (a;;, ax), composition, and inverse. In the term(a;;, ax)
for 7, j, k € 1..3 the first 9 elements represent a 3 x 3 square matrix, and the last 3 elements represent
a translation vector. We require the 3 x 3 matrix to be invertible, which is verified by a run-time
check of the determinant.

The data term M[A] describes a data frame shift. Note that M[A] = A is not always true even
on scalars; e.g., M[vev’] is not the same as vev’ when M does not preserve distances. Hence, M[A]
does not mean apply M to the data value produced by A; it means shift frame and evaluate the
term A in the frame obtained from M and composed with the global frame.

The evaluation relation A 4+—¢, describes the computation of a closed data term A to value €,
relative to global frame A. The relation is a partial function defined by induction on the structure
of terms. Most cases simply follow the structure of terms; the key rules are the evaluation of the
origin in a frame: * 4—.4((0,0,0)) (and similarly for the unit vectors like T, 4—.A(1 (1,0,0))), and
the evaluation of frame shift: the value of M[A] in frame A is uniquely determined as the value of
A in frame A o B, provided that the value of M in frame A is B.

4. PROCESS OBSERVATION AND EQUIVALENCE

We establish the invariance of process behavior under certain transformations of the global
frame. We base our results on barbed congruence, which is one of the most general notions of
process equivalence in process algebra [4, 7, 10] and gives rise to a definition of algebraic process
equation. For 3rn, we relativize equations to affine frames, and investigate how the validity of the
equality changes when shifting frames.

Barbed congruence is defined using barbs and observation contexts. Barbs identify what can
be observed by the process environment; in our case, barbs are outputs on channels. Observation
contexts define the process environment: different strengths of observation can be characterized by
different classes of contexts. We choose to observe processes only by interaction on channels and by
restricting the interaction channels. Therefore, we do not allow observation contexts that have the
flavor of manipulating a whole process, like injecting a process into the observer’s code, or injecting
a process into a frame.

Definition 9. Barbed Congruence

o An observation context ' is given by: I' =:= []| P|T'| T'|P | (va)I", where [] only occurs once
in I'. The process, I'[Q)] is the process obtained by replacing the unique [] in T’ with Q.

o Strong Barb on x: Pl, & P = (vy1)..(vyn)(12(A).P’|P") with & # y1..Yn.

o A-Barb on x: Pqll, £ 3P .Ps—*P' AP’ |,.

8 PROCESSES IN SPACE

o A-Candidate Relation: R is an A-candidate relation iff for all PRQ: (1) if P |, then Q.4 {;
conversely if Q |, then Py |.; (2) if P4— P’ then there is @’ such that Q 4—*Q’ and P'RQ’, if
Q 4—Q’ then there is P’ such that P4—*P’ and P"RQ’; (3) for all observation contexts I', we have
T[P] R T[Q].

o A-Barbed Congruence:, ~is the union of all A-candidate relations, which is itself an A-
candidate relation.

In order to state our theorems, we need compatibility relations, A oc A and A o« P, constraining
the frame A by a simple analysis of the vector operators used in data A and process P. A closed
data term is affine if it does not contain vev’ and v x v’ subterms, Fuclidean if it does not contain
v X v’ subterms, and rigid otherwise.

Definition 10. Frame and Group Compatibility
o For A € GA(3) and closed data term A, write AxA (A compatible with A) iff:
o if A contains e then A € F(3);
o if A contains x then A € SE(3);
o otherwise, no restriction on A.
o For group G C GA(3) and closed data term A, write G o« A iff VA € G. A o A. Write
A x P and G « P if A and G are compatible with all the data terms in P.

Hence we have: GA(3) o< A implies A is affine; F(3) o A implies A is Euclidean; SE(3) o< A
implies A is rigid (i.e., SE(3) < A always).

We are normally interested only in equations between processes without computed values; we
now restrict our attention to such process terms, which we call pure terms.

Definition 11. Pure Terms
A data term A and process term P is pure if it does not contain a value subterm ¢ of sort

o €{a,p,v,m}. We use AY and P to denote such pure terms.

The invariance of equations between pure terms under certain maps is described by a relativity
theorem. The key property is that G-equations are G-invariant, meaning that for a group G, the
validity or invalidity of equations that are syntactically compatible with G is not changed by G
transformations.

Definition 12. Equations and Laws
An equation is a pair of pure process terms P ,Q", written PV = Q" . It is:
o A G-equation, for G C GA(3) iff G < PY and G x Q" ;
A law in A, for A e GA(3) iff PV 4 ~Q";
A law in G, for G C GA(3) iff, VA € G it is a law in A;
B-invariant, for B € GA(3) iff VA € GA(3) it is a law in A iff it is a law in Bo A;
G-invariant, for G C GA(3) ift VB € G it is B-invariant;
Invariant across G, for G C GA(3) it VA, B € G it is a law in B if it is a law in A.

O O O O O

Theorem 13. Relativity
G-equations are G-invariant, and hence invariant across G.
For the three main transformation groups of interest, our theorem has the following corollaries:

o GA(3)-equations (those not using e or x) are GA(3)-invariant: that is, affine equations are
imvariant under all maps.

PROCESSES IN SPACE 9

o E(3)-equations (those not using x) are E(3)-invariant: that is, Fuclidean equations are
invariant under isometries.
o SE(3)-equations (all equations, sinceSF(3) imposes no syntactic restrictions) are SFE(3)-
invariant: that is, all equations are invariant under rigid-body maps.
Further, ‘G-equations are invariant across G’ can be read as ‘G laws are the same in all G frames’,
in the same sense that one says that ‘the laws of physics are the same in all inertial frames’. Thus
we obtain:

o Affine laws are the same in all frames.
o Euclidean laws are same in all Euclidean frames.
o All laws are the same in all rigid body frames.

For example, the Euclidean equation (1, e 1,= 1.Pv) = PV is a law in the (identity) frame,
and hence is a law in all Euclidean frames. Moreover, this equation may be valid or not in some
initial frame (possibly a non-Euclidean one like a scaling S(2. 1)), but its validity does not change
under any further Euclidean transformation. Note also that this equation can be read from left
to right as saying that 1, e 1,= 1.rY computes to PY. Hence equational invariance implies also
computational invariance (but this only for computations from pure terms to pure terms, where
any value introduced by communication is subsequently eliminated by data comparison).

As a second example, for any three points p* ,¢", 7", the affine equation ((qv —pv)—|—(rv —qv) =
(r¥ —p¥).PY) = P isalaw in the Z frame, and so is a law in all frames; in fact it is the head-to-tail
axiom of affine space.

As a third example, for any point p", the equation (]ov = -x-.Pv) = PV is invariant under all
translations (because all equations are invariant under rigid-body maps); hence, the comparison

pv = gives the same result under all translations, and cannot be used to test the true value of
the origin no matter how pv is expressed, as long as it is a pure term.

5. CONCLUSIONS

We have introduced 3w, an extension of the n-calculus based on affine geometry, to describe the
concurrent evolution of geometric structures in 3D space. We have proved a relativity theorem
stating that all algebraic equations are invariant under all rigid body transformations (rotations
and translations, not reflections), implying that no pure process can observe the location of the
origin, nor the orientation of the basis vectors in the global frame. Moreover, processes that do
not perform absolute measurements (via ® and x) are invariant under all affine transformations,
meaning that they are also unable to observe the size of the basis vectors and the angles between
them. Finally, processes that use e but not x are invariant under all the isometries, meaning
that they cannot observe whether they have been reflected. Therefore, these results describe the
extent to which a process can observe its geometric frame, and describe the behavior of a process
in different geometric frames.

REFERENCES

[1] G. Berry, G. Boudol. The Chemical Abstract Machine. Proc. POPL’89, 81-94.

[2] L. Cardelli, A.D. Gordon. Mobile Ambients. Theoretical Computer Science, Special Issue on Coordination, D.
Le Métayer Editor. Vol 240/1, June 2000. pp 177-213.

[3] H.S.M. Coxeter, Introduction to geometry, Wiley, 1961.

[4] C Fournet, G Gonthier. A Hierarchy of Equivalences for Asynchronous Calculi. Proc. 25th ICALP. LNCS 1443,
844-855. Springer 1998.

10 PROCESSES IN SPACE

[5] J. Gallier. Geometric Methods and Applications for Computer Science and Engineering. Springer, 2001.
[6] M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.
[7] K. Honda, N. Yoshida. On Reduction-Based Process Semantics. Theoretical Computer Science, 152(2), pp.
437-486, 1995.
[8] M. John, R. Ewald, A.M. Uhrmacher. A Spatial Extension to the = Calculus. Electronic Notes in Theoretical
Computer Science, 194(3) 133-148, Elsevier, 2008.
[9] R.J. Metzger, O.D. Klein, G.R. Martin, M.A. Krasnow. The branching programme of mouse lung development.
Nature 453(5), June 2008.
[10] R. Milner. Communicating and Mobile Systems: The pi-Calculus. CUP, 1999.
[11] R. Milner, D. Sangiorgi. Barbed Bisimulation. In Proc. 19-the International Colloquium on Automata, Languages
and Programming (ICALP ’92), LNCS 623, Springer, 1992.
[12] P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1991.

6. APPENDIX A: GEOMETRY

6.1. Vector Spaces and Automorphism Groups. A wvector space over a field F' is a set V' with
operations + € V x V. — V (vector addition) and - € F x V — V (scalar multiplication), such
that (V,+) is an abelian group, with identity the zero vector ¢ and inverse —v, and moreover:
a-(vtw)=a-v+a-w, (a+b)-v=a-v+b-v,(a-b)-v=a-(b-v),and 1-v =wv. Three-dimensional
space, R3, is our basic vector space over the field of reals: the vectors are the points of R3, + is
coordinatewise addition, and- is coordinatewise multiplication. A linear map over a vector space
Visan f € V — V such that f(v+ w) = f(v) + f(w) and f(a-v) = a- f(v); group axioms then
ensure that it preserves also unit and inverse. Lin(V) is the set of such linear maps. In Fuclidean
spaces, e.g. R?, one considers the ability to measure. This is achieved by extending the underlying
vector space with the dot product of vectors, giving the ability to measure distances and angles, and
with the cross product of vectors, giving the ability to generate out-of-plane vectors, to measure
areas and volumes, and to detect handedness. Both dot and cross product are linear maps in each
argument.

The General Linear Group GL(V) C Lin(V) of a vector space V is the group of all the au-
tomorphisms (bijective linear maps) over V, i.e., invertible elements of Lin(V). When studying
subgroups of GL(V'), it is convenient to use linear algebra to represent the group elements. In
particular, GL(R?), the group of automorphisms of the R3 vector space, can be given as the group
of invertible 3 x 3 matrices A in linear algebra, where matrix multiplication A - B is an operation
over sizes (n x m) x (m x n) — (m x n). On matrices we use also A” for transposition, A + B
for addition, a - A for scalar multiplication, and A~"! for inverse. With the elements v € R? inter-
preted asl x 3 (column) matrices, we obtain the required linearity properties from linear algebra:
A-(v4+v) = A-v+A-v and A-(a-v) = a-(A-v) for any scalar a. Note again that only the invertible,
i.e. bijective, matrices are members of GL(R?). The Special Linear Group SL(R?) is the subgroup
of matrices with determinant 1: as transformations these preserve volume and handedness.

The General Affine Group GA(V) is the group of affine vector maps over V; these maps are
presented as pairs (A, u) where A € GL(V), and where u € V is a translation vector. In particular,
GA(R?) is the affine group over the R? vector space. We use 3 x 3 invertible matrices for A, with
(A,u)(v) & A-v+u for any v € R3. Geometrically, affine vector maps transform straight lines
into straight lines, and preserve ratios such as midpoints. The Special Affine Group SA(R?) is the
subgroup with matrices with determinant 1.

Concretely, we work always over the field R and the vector space R?, hence we abbreviate these
groups as GA(3), SA(3), GL(3), SL(3).

For the next automorphisms groups we need to investigate some special matrices. An orthogonal
matriz is a square matrix A such that A7 = A=! (and hence A- AT = AT A = id, and also det(A) =

PROCESSES IN SPACE 11

+1). All orthogonal matrices are isometries, i.e., preserve distances, which can be seen as follows.
The vector dot product (of column matrices) is defined as vew £ v™ -w, and v? £ vev. If AT = A~!
we then have that A-veA-w = (A-v)T-(A-w) =vT- AT - A-w = vT-id-w = vT-w = vew. And also
(A-v)? = v2. Distance in a vector space equipped with dot product is defined as d(v, w) = y(v—w)?.
For A orthogonal, we then have d(A-v, A-w) = {(A-v—A-w)? = {(A-(v—w))? = {(v—w)? = d(v,w),
that is, A preserves distances.

The Orthogonal Group O(3), subgroup of GL(3), is the group of linear isometries of R3, that is,
the group of orthogonal matrices, which correspond to rotations and reflections around the origin.
As we have just shown, members of O(3) preserve dot product: A -veA - w = vew. The Special
Orthogonal Group SO(3) contains only the direct linear isometries, that is, just the rotations.
Members of SO(3) distribute over cross product: A-vx A-w = A- (v x w) [13]. Intuitively that is
because cross product can measure areas and handedness, but is insensitive to isometries that do
not change handedness.

The Euclidean Group E(3), subgroup of GA(3), is the group of isometries of R?; its elements can
be given as affine vector maps (A, u) where A is an orthogonal matrix (a rotation or reflection) and
u is a translation vector. We have seen that members of O(3) are isometries, but such (A4, u) are too:
for A € O(3) we have that d((A, u)(v), (A, u)(w)) = d(A-v+u, A-w+u) = /(A-v+u—(A-w+u))? =
J(A-v—A-w)? =d(v,w). That is, all affine vector maps (A, u) where A is an orthogonal matrix
are also isometries.

The subgroup SFE(3) of FE(3) of direct isometries excludes reflections; that is, the determinant
of A must be 1. Elements of SE(3) are then the rigid body motions, preserving handedness and
distances.

The subgroup relation on the automorphism groups discussed so far forms a cube standing on
the SO(3) vertex, with GA(3) at the top. Maps contained in the bottom faces of the cube have the
following interpretation: the face below E(3) preserves distances and angles; the face below SA(3)
preserves volumes and orientation; the face below GL(3) preserves the origin. Various vertices
of the cube hold the basic geometric transformations: rotation, translation, reflection, shearing,
isotropic scaling, and volume-preserving squishing (non-orthogonal matrices with det = 1). There
are many more automorphism groups; e.g., the group of pure translations, below SE(3), the group
of pure reflections, below O(3), and the group of identities below all of them. However, the cube
depicts the most studied automorphism groups, and a finer structure is not necessary for the study
of geometric invariance properties, at least not in this paper.

We work in GA(3) and its subgroups. For example, we regard an affine vector map (A, u) €
GA(3) as a member of GL(3) when v = 0, and as a member of E(3) when A is orthogonal, and
further as a member of O(3) when v = 0. We fix a representation of affine vector maps based on
linear algebra.

6.2. Affine Spaces and Affine Maps. Affine geometry is intuitively the geometry of properties
invariant under translation, rotation, reflection and stretching. It can be properly formulated by
the notions of affine spaces and affine maps [3, 5.

Definition 14. Affine spaces

An affine space is a triple (P, V,) where P is a set (of points), V is a vector space, and 0 €
P x P — V is a function which characterizes ‘the unique vector 6(p,q) from p to ¢’. The map 6
must satisfy:

(1) for each p € P, 0, € P =V =)q.0(p, q) is a bijection;

(2) the head-to-tail equation holds: 0(p,q) + 0(q,r) = 6(p,).

12 PROCESSES IN SPACE

Because of (1), P and V are isomorphic, but there is no canonical isomorphism. The vector
0(p, q) is sometimes called the point difference, written ¢g-—p. We also define vector-point addition
as + € V. x P — P =)w,p.0, ' (v) (which is a group action of (V,+) on P). The affine space
of free vectors over P is a canonical affine space constructed over a set of points P that is also a
vector space. It is common to take V' = P in such a construction. In our operational semantics,
however, we need to distinguish between points and vectors; hence we take for V' a set isomorphic
but distinguishable from P. We focus on the space of free vectors over the points of R3. Note that
R? is also a vector space, with the null vector indicated by g.

Definition 15. The affine space of free vectors over R?
The affine space of free vectors over R3 is (R?, FV(R3), 1), where:
o The set of points of the affine space is R3.
o FV(R?) £ {¢} x R%is a vector space equipped with e and x, given by the product structure.
o e R? xR = FV(R®) 2 Np, q)-(¢,q — p)-

Auxiliary definitions and properties:
o 1,2 Mq). 1t (p, g)is a bijection for each p.
o g=p =1 (p.q) = ($.a—p)
o U—i—péﬂ;1 (v)with (¢, q) +p=q+p
o t£f4and |21~ are linear maps, with 1 p = (¢, p), and | (g,p) = p.

The set {¢} x R? can be seen also as the set of canonical representatives of free vectors (equivalence
classes of vectors with the same size and orientation), and can be explained as the vectors rooted
at the origin.

Affine vector maps of the form dv.f(v) + w € V — V with f € Lin(V) are common in the
literature of automorphism groups, as presented in Section 6.1. Affine point maps of the form
A.f(qg=0) + p € P — P instead are common in the literature of affine spaces [5]. Confusingly,
they are both called just ‘affine maps’. Bijective point and vector maps form groups under function
composition, identity, and inverse, and these groups are related by a group isomorphism: for each
choice of origin o, just like there is an isomorphism 6, between points P and vectors V, there is
also a group isomorphism ¢ = Ah.0, o h o 0,1 between the group of bijective affine point maps
with origin o, and the group of bijective affine vector maps GA(V). The isomorphism transforms
a point map that maps a point p seen as a vector p-o to the point f(p—o) + ¢, into a vector map
that maps the vector p—o to the vector f(p-o0)+ (¢—o), which when rooted at the origin leads to
the point (f(p=o0) + (¢g=0)) + 0 = f(p=0) + q. Up to this group isomorphism, we consider affine
point maps (then called just affine maps in the body of this paper) as members of GA(V).

Affine point maps over the affine space of free vectors over R? are denoted by script letters
A,B.C,... and are represented as pairs A = (A4, ¢). They are applied to points p to obtain transformed
points A - p + ¢, and are extended to vectors v =1} (p,q) by taking A(ft (p,q)) =0 (A(p), A(q)),
which means that A(v) = (1 oAo |)(v), where the translation components cancel: this reflects the
fact that v are ‘free’ vectors, invariant under translation. These rules for applying maps, and the
rules for composing and inverting maps, are given in Definition 16.

Definition 16. Affine point maps
A€ GA(3) means A= (A,p) where 1odo e GL(3); that is, det(A) # 0.
A€ E(3) means A= (A,p) where 1o0do € O(3); thatis, AT = A1
Aec SE(3) means A= (A,p) where 1 oAole SO(3); thatis, det(A)=1.

PROCESSES IN SPACE 13

Vg € RS, VA € GA(3). A) = (Ap@ & Agtp < &
Vo € FV(R3),VA € GA(3). Alw) = (A p)(v) £ (1040])(v) € FV(R?)
VA, B € G subgroup of GA(3). AoB = (A,p)o(B,q) & (A-B,A-q+p) €G
VA € G subgroup of GA(3). At = (Apt L2 (41 -Atp) eq

It should be noted that this definition can be formulated as a theorem in a general treatment of
the groups of affine vector maps and affine point maps, and their representation in terms of linear
algebra. For conciseness, we take it here as a given.

The following proposition collects all the geometric facts needed in Theorem 22.

Proposition 17. Distribution laws of affine point maps

1)Vp,q e R®, A€ GA(3). A(g)=Alp) = Alg=p) € FV(R?)
2)Vwe FV(R3?),pe R}, A€ GA(3). A(v)+ Alp)=A(v+p) €R3
3) Vu,w € FV(R3),A € GA(3). A(w) + A(w) = A(v +w) € FV(R?)
4)Va € Rve FV(R?), A€ GA3). a-A(v)=Ala-v) € FV(R?)
5) Yo,w € FV(R3), A € E(3). A(v)eA(w) = vew €ER
6) Vv, w € FV(R3), A € SE(3). A() x A(w) = A(v x w) € FV(R3)

Proof. Let A = (A,r). By Definition 16: if A € GA(3), then the vector map 1 ocAo € GL(3) is a
linear map; if A € E(3), then 1 0A4o |€ O(3); and if A € SFE(3) then 1 cAo [€ SO(3). Recall that
it f € O(3) then f(v)ef(w) =wvew, and if f € SO(3) then f(v) x f(w) = f(v x w) [13].

D (Ar)(@)=({A,r)(p) = A-q+r=A-ptr={(§(A-qg+r)=(A-p+tr)) = ($A-(¢-p) =
(todeol) - (ga—p)= <A,7“>(p)-

2) (A, r)({¢,q) + (A,r)(p) = (T oo L)({4,q)) + A-p+r=($A-q) + A-p+r=A-(¢+p)+7r =
(4,7)(a+p) = (Ar)({g0)).

3) (A,r)((4,p) + (Ar)((9q) = (T odo D({4,p) + (T odo D)((4,q)) = T (A-p)+ 1 (A-q)
=1 (A-ptA-q) =1 (A (p+) = (1 odo D({gp +a) = (1 odo (1) + (§.0)) =
(A,r)((g:p) + (¢, 9)-

4) a-(A,r)((4,p)) = a- (1 e Ao L)((4,p)) = a- T (A-p) =1 (a-A-p) = 1 (A:(a-p)) = (T 0 Ao })({¢, a-p))
= (A.r)(a- (g,p)).

5) (A,7)(v)e{A,r)(w) = (1 0Ao |)(v)e(t 0o |)(w) = vew since T ocAo L€ O(3).

6) (A,7r)(v) x (A, r)(w) = (T 0do [)(v) X (T 0do |)(w) = (1 0Ao |)(v x w) since T oAo L€ SO(3)
=(A,r)(v X w). O
REFERENCES
[13] F. Jones. Vector Calculus. Chapter 7: Cross Product. (Unpublished book; available at

http://www.owlnet.rice.edu/~ fjones/chap7.pdf.)

7. APPENDIX B: PROOFS
The full definition of Structural Congruence is as follows:
Definition 18. Structural Congruence

(= Refl) P=P
(= Symm) P=Q=Q=P
(= Tran) P=QQ.Q=R=P=R

14 PROCESSES IN SPACE

(= Act) P=P =ntP=nP

(= Sum) P=P.Q=Q =P+Q=P +Q

(= Par) P=P.Q=Q' =P |Q=P|Q

(= Res) P=P = (vz)P = (vz) P’

(= Repl) P=P =pP*=pP~

(= Map) P=P = M[P]= M[P’]

(= Map Cnp) MIA =, &P = MIA] = (AT M(P

(= Map Out) M[!g:c(A).P] = l,x(M[A]).M[P]

(= Map In) M[?sa(y). P = ?,x(y).M[P] (y ¢ fos(M))
(= Map Sum) M[P+Q]=M[|+ M(Q)

(= Map Par) M[P | Q= M[P] | M[Q]

(= Map Res) M]|(vz)P] = (va&)M[P]

(= Map Comp) MIN|P]| = (M o MIN)[P)

(= Sum Comm) P+Q=Q+P

(= Sum Assoc) (P+Q)+R=P+(Q+R)

(= Sum Zero) P+0=P

(= Par Comm) P|Q=Q|P

(= Par Assoc) (P|Q)|R=P|(Q|R)

(= Par Zero) Plo=P

(= Res Zero) (vx)0=0

(= Res Sum) (vz)(P+ Q) =P+ (vz)Q (x & fue(P))
(= Res Par) (va)(P | Q)= P | (va)Q (e ¢ fue(P))
(= Res Res) (vz)(vy)P = (vy)(vx)P

(= Repl Zero) 0*=0

(= Repl Par) (Pl Q) =P | Q*
(= Repl Copy) P*=P | P*

(= Repl Repl) P = p*

The basic operators over the data values are given in Definition 19. Note that there are similar
operations on different domains: for example, + between reals, + between vectors, and 4 between
vectors and points. Note also that vector mapping ignores the translation component p (or rather,
it cancels when applied to the end points of v); this is the sense in which vectors are ‘free’: invariant
under translation.

Definition 19. Operations on Points, Vectors, and Maps

(z,y,2)=(2",y",2") £ te—ay—vy,z—2) point subtraction
Mo,y 2) F @y, 2) & (a2, y+y,z+2) point translation
a-t{z,y,2) & tla-z,a-y,a-z) vector scaling

My,)+ T2y, 2) & T+, y+y,z+2) vector addition
T <x7y’ Z>. T <$,7y’7 Z?> é &€ - 1:7 + Y- y, +z- 37 dOt pI‘OdUCt

PROCESSES IN SPACE 15

Moy, 2)x T’y 2") & tly-2—2-y,z- 2 —x-2,x-y —y-2’) cross product

(A;p)(q) & A-q+p point mapping

(A, p)(v) = (T 0dAo })(v) vector mapping
(A,p)o(A,p) & (A-AA-p +p) map composition
(A,p)~" é (A7, —A"1.p) map inverse

In Definition 20 we define the relation A 4+>€, which describes the computation of a closed data
term A to value ¢, relative to global frame A. The relation 4+— is a partial function, described
in operational style for ease of induction. The key rule is (Frame Shift): when computation
encounters a frame shift M[A], the value of M[A] in frame A is uniquely determined as the value
of A in frame A o BB, provided that the value of M in frame A is .

Definition 20. Computation of closed data terms in a frame A

(Scalar Real) — ra—b if literal 7 represents b € Val,
(Scalar Arith) — a;a—b; = f(ai)a—f(b;) i€ l.arity(f) if b; € Vala, f(b;) defined
(Scalar Dot) VAW, VAW = vev gwew’ if w,w € Val,

(Point Origin) *4—A((0,0,0))

(Point Move) — vg—w,pa—q = v+ pa—w +q if we Valy, ¢ € Valp
(Vect Unit,,) 1z a—A(T(1,0,0))

(Vect Unit,) Ty a—A(1(0,1,0))

(Vect Unit,) T2 a—A(T(0,0,1))

(Vect Sub) PA—G P A =D — P Aa—q—q if ¢, ¢’ € Valy

(Vect Scale) as—b,v—w = a-v—b-w if be Vala, w e Val,
(Vect Add) vAPW, U g—w = v+ v —w + w’ if w,w” € Valy

(Vect Cross) VAW, U AW = 0 X V= w X w’ if w,w € Valy,

(Map Given) aijA»—>bij, arA—br = <aij, ak>Al—><bij, bk> if bij, b € Valy, det(bij) 75 0
(Map Comp) M =B, M’ g8 = M o M’ g—~Bo B’ it BB € Valm

(Map Inv) Ma—B= M~ —B~! if Be Valm
(Frame Shift) Ma—B, A qop—e = M[A] g€ if BeValm
(Value) EAFYE ife e Valm

Most of these rules express a straightforward correspondence between the syntactic operations
on data terms and semantic operations on values. It is easy to check that terms of sort o compute
to elements of Val,. Note that the rules (Point Origin) and (Vect Unit) make essential use of
the current frame. The rules (Scalar Arith) and (Map Given) are partial: they can cause ‘divide
by zero’, ‘zero determinant’, and other errors. However, (Map Inv) is always defined because if
M a—B, then B must be invertible by (Map Given). The (Frame Shift) rule has already been
discussed. The (Value) rule normally comes into play after a by-value substitution due to process
interaction: a value that was already evaluated in some frame is not further evaluated in the current
frame. Moreover, since Val. = Vare, the (Value) rule covers also the evaluation of channels to
themselves; that is, xca—>xc.

16 PROCESSES IN SPACE

In the formulation of our results we also require the notion of C(A), which is the application of
the map C to all the value subterms of A:

Definition 21. Map Application on Data
For C = (A, p) € Valy,, define

Cle) & A-e+p ife € Valp (on points)
Cle) £ (1odol)(e) ifeeVal, (on vectors)
Cle) = ¢ ife € Vala UValy, UVal. (on scalars, maps, and channels)

C(A) is the term obtained by replacing all the value subterms € of A with C(g).

The choices in this definition are simply explained by examples. Consider the termA =1 (1,0, 0)+
k, containing the fixed value 1 (1,0, 0), and the relative origin %, with reductions (by (Value) and
(Point Origin)):

C(A) =C(1(1,0,0)) +# coa—> C(1(1,0,0)) + (Co.A)((0,0,0))

That is, for € =7 (1,0,0) + .A((0,0,0)), we have:
Ay—~e and C(A)coa—C(e)

Similarly,B[*] 4+ (A o B)((0,0,0)) and C(B[*¥]) = B[*¥] coa— (C o Ao B)((0,0,0)) = C((Ao
B)((0,0,0))), where C(B) = B because maps B are arrays of reals, and like reals are not affected by
mapping. This suggests the general form of our next theorem:C(A)co4— means applying an extra
C separately to the values inside A via C(A) (which are then not modified by the (Value) rule),
and to the other terms inside A via ¢o4+— . The proof of Theorem 22 uses geometric facts that are
derived in Appendix 1.

Theorem 22. Global Frame Shift for Data
C x A, AAi—)G = C(A)COAHC(E)

Proof. The proof is by mutual induction on the derivation of A 4+€; that is, by induction on the
conjunction of 5 statements for the 5 sorts o of A, as given in the 5 cases below.

When A = g, the ¢ of the various sorts fall into the respective subcases. Since all these subcases
are handled equally, we show the (Value) case first:

Rule (Value): Show that C « €,e4e = C(€)coa—C(g), for € of any sort. Then, by (Value)
C(A) =C(e)coa—C(e).

Case (0 = ¢): Show that C x A, Ag—=2c = C(A)coa—2e. Then, Ay 4—a. is the consequent of
Rule (Value) or:

Rule (Frame Shift):Mai—B,A’ Ao B—x, = M[A’|g—xc. Since C < M[A’], we have C o< M
and C oc A’. Tt follows that C(M)coa—B and C(A’)co a0 (by induction). Hence C(M[A’]) =
C(M)[C(A)]coarrxe by (Frame Shift).

Case (0 = a): Show that C x a,as—b = C(a)coar—b. Then a—b is the consequent of Rule
(Value) or one of the rules:

Rule (Scalar Real): r—b. ThenC(r) = reoa—b (by (Scalar Real)).

Rule (Scalar Arith): a;a—b; = f(a;) a—f(b;) with i € 1..arity(f). Since f(a;)a—f(b;) we know
that f(b;) is defined. Then C(f(a;)) = f(C(ai))coa—f(b;) (by induction and (Scalar Arith)).

PROCESSES IN SPACE 17

Rule (Scalar Dot): va—w, v’ g—w’ = vev’ g—wew’, and C € E(3). C(vev’) = C(v)eC(v’) coar—C(w)eC(w’)
(by induction and (Scalar Dot)) = wew’ (by Prop. 5.2-4).

Rule (FrameShift)(c = a): Ma—B,a’ 4o—b = M[a’] a—b. Since C & M[a’], we have C o< M
and C « a’. It follows that C(M)coa—B and C(a’)cosop—b (by induction). Hence C(Mla’]) =
C(M)[C(a")])coar>b by (Frame Shift).

Case (0 = p): Show that C x p,pa—q = C(p)coa—C(q). Then p4—q is the consequent of Rule
(Value) or one of the rules:

Rule (Point Origin): +4—A((0,0,0)). C(¥) = #kcoa—(C o A)((0,0,0)) (by (Point Origin)) =
C(A({0,0,0)))

Rule (Point Move): va—w,p’ a—~q = v+p a—w+q. Clo+p) =Cv)+C(p)coa—C(w)+C(q)
(by induction and (Point Move)) = C(w + ¢’) (by Prop. 5.2-4).

Rule (Frame Shift)(o = p):Ma—B,p’ ao8—q = M[p’]a—q. Since C < MI[p’], we have C o« M
and C x p’. It follows that C(M)coar—B and C(p’)coaon—C(q) (by induction). Hence C(M[p’]) =
C(M)[C(p)leoa—C(q) by (Frame Shift).

Case (0 = v): Show that C & v,v4—=w = C(v)coa—C(w). Then v —w is the consequent of Rule
(Value) or one of the rules:

Rule (Vect Unit): 1, a4—A((1,0,0)). C(Tz) =tu coa—(C o A)((1,0,0)) (by (Vect Unit)) =
C(A((1,0,0))). Similarly for 1, and ..

Rule (Vect Sub): pa—=q,p’aq" = p = p=q=q’. C(p—p’) = C(p) = C(p")coa—C(q)=C(q’) (by
induction and (Vect Sub)) = C(¢=q’) (by Prop. 5.2-4).

Rule (Vect Scale): a—b,v’ g—w = a- v 4b-w’. Cla-v’) = C(a) - C(v)coa—b - C(w’) (by
induction and (Vect Scale)) =C(b-w’) (by Prop. 5.2-4).

Rule (Vect Add): v’ g—w’, 0" g—w” = v+ 0w’ + w”. C(v' 4+ 07) =C(v’) + C(v”)conr—C(w’) +
C(w”) (by induction and (Vect Add)) = C(w’ + w”) (by Prop. 5.2-4).

Rule (Vect Cross): v’ g—w’, v g—w” = v’ X v"—=w’ X w”, and C € SE(3). C(v’ x v") = C(v’) X
C(v")coar~C(w’) x C(w”) (by induction and (Vect Cross)) = C(w’ x w”)(by Prop. 5.2-4).

Rule (Frame Shift)(oc =v): Ma—B,v q4op—w = M[v’] g—w. Since C < M[v’], we have C x M
and C x v’. Tt follows that C(M)coa—B and C(v’)cosop—C(w) (by induction). Hence C(M[v’]) =
C(M)[C(v")]ecoarC(w) by (Frame Shift).

Case (0 = m): Show that C o« M, M —B = C(M)coa—B. Then M4—B is the consequent of
Rule (Value) or one of the rules:

Rule (Map Given): ai; a+>bij, apa—by = (a;j, ag) a—(bi;, b)), for 4,5,k € 1..3 and det(b;;) # 0.
Then C({a;j, ar)) = (C(aij),Clax))coa—>{bij, bi) (by induction and (Map Given))

Rule (Map Comp): M’ 4—~B", M” 4B = M’ o M” 4—~B" o B”. We have C(M’ o M”) =C(M’) o
C(M”)con—B’ o B’ (by induction and (Map Comp)).

Rule (Map Inv): M’ 4—B = M’ 4B~ We have C(M'™') = C(M’)cou—B""" (by induc-
tion and (Map Inv)).

Rule (Frame Shift)(c =m): M’ g—D, M” gop—B = M’[M”] 4—B. Since C < M’[M”], we have
C ox M’ and C o« M”. Tt follows that C(M)coa—D and C(M”)cosop—B (by induction). Hence
C(M’[M7]) = C(M)[C(M”)]con—B by (Frame Shift). O

18 PROCESSES IN SPACE

We now give a local frame shift result on processes that is the exact analog of the (Frame Shift)
rule on data given in Definition 20. This result uses all the (= Map...) rules in the structural
congruence relation, except for the (= Map Comp) rule. The result depends on data computation
only in using the (Frame Shift) and (Map Comp) rules. It would therefore hold for any data
sublanguages and data computation rules which were compatible with these rules. Recall that
process reduction, P4—Q, was introduced in Definition 5.

Theorem 23. Local Frame Shift
MA'—>B, PAoB — Q = M[P}A%M[Q]

Proof. The proof is by induction on the derivation of P 40,5 — Q.

Rule (Red Comm): Agop—e = l,x(A).P+ P | 7,2(y).Q" + Q" a8 — P’ | Q{y\e}. From
M 4B, we obtain M[A] g€ by (Frame Shift). By (Red Comm) we than have: |,z(M[A]).M[P’]
+M[P"] | Tox(y).M[Q)+M[Q]a—MI[P’] | M[Q{y\e}. Since M 4B, we know that M is closed.
Hence, for any variable y, we have M[Q{y\e} = M[Q{y\e}]. Therefore, M[l,z(A).P’ + P” |
?U:L'Ey).Q’%Q”]AHM[P’ | @{y\e}] by (= Map Sum), (= Map Out), (= Map In), (= Map Par)
and (Red =).

Rule (Red Cmp): AaopY A' = A =, AP’ 4o — P’. Since M —B, we have M[A]4Y M[A’]
by (Frame Shift), so from (Red Cmp) we obtain M[A] =, M[N].M[P’| 4—M|[P’]. Therefore
M[A =, A.P’| 40— M[P’] by (= Map Cmp) and (Red =).

Rule (Red Par): P'pop — Q" = P’ | Raog — @’ | R. By induction M[P’]4—M][Q’], hence
MI[P’] | M[R|4a—M[Q’] | M[R] by (Red Par) and M[P’ | R|a—M|[Q’ | R] by (= Map Par) and
(Red =).

Rule (Red Res): P’aop — Q = (v&)P’ 4o — (v&)Q’. By induction M[P’]4—M][Q’], hence
(ve)M[P’] g— (ve)M[Q’] by (Red Res) and M[(vz)P’] 4—M][(vz)Q’] by (= Map Res) and (Red =).

Rule (Red =): P =P, P a8 - Q,Q" = Q = Paog — Q. By (= Map), M[P] = M[P’] and
MI[Q’] = M[Q]. By induction M[P’] 4—M][Q’]. Hence M[P]|4—M][Q] by (Red =). O

The (= Map Comp) rule is not used in the proof of the theorem. This indicates that we might
restrict ourselves to a Dpi style calculus without the nesting of frames. In our nested calculus, the
derived reduction for nested process frame, using Theorem 23 twice, is:

Ma=B, Naos—C, Paogoc = @ = N[Plaos = N[Q] = M[N[P]Ja—M[N|[Q]]
In a non-nested calculus, we could emulate this reduction, from the same assumptions, by:

MAHB, N_AoB'_)C,P_AoBoC — Q = M[N]Ai—)c
= Mo M[N]jg—=BoC = (Mo M[N))[P|a—(M o M[N))[Q]

using (Frame Shift), (Map Comp) and Theorem 23. In other words, if we had neither (=
Map Comp) nor nested process frames, we could still emulate M [N[P]]by(M o M[N])[P]. But with
3 nested process frames, we end up with 3 nested frames on the maps. Hence we would still need
to handle nested frames at least on the data.

We show that we can shift process reductions to different frames. A shifted process does not
reduce to exactly the same process as in the original version, e.g. changing from @ to C(Q), but those
differences have no effect on process traces (under the usual « assumptions). That is, differences
due to value substitutions in different frames can then cancel out because data comparisons remove
the values from the terms. The o relation extends to processes in the obvious way: C o P holds if

PROCESSES IN SPACE 19

and only if C oc A holds for all data subterms A of P, where C o A is given in Definition 10. C(P)
is the process obtained by replacing all the value subterms € of P with C(¢).

Lemma 24. Congruence Mapping
P=Q = C(P)=C(Q)

Proof. The proof is by induction on the derivation of P = Q. The interesting rules are the (= Map
..) rules; we look at two of them.

Rule (= Map): P’=Q’ = M[P’] = M|Q’]. By induction C(P’) = C(Q’), hence C(M)[C(P’)] =
C(M)[C(Q)] by (= Map), that is C(M[)] EC(Q0.

Rule (= Map In): M[?,z(y).P’] = 7,2(y).M[P’] (y ¢ fv(M)). Theny ¢ fv(C(M)), and we
IJEWG ?(1)\4[7033(?;)-13’}) = C(M)[?5x(y) C(P) = 2oa(y)-COM)C(P)] = C(0a(y).MIP) by (;
ap In).

The o relation is extended to the process syntax in the obvious way: A o« P holds if A « A
holds for all data subterms A of P, where A A is given in Definition 4.1-2.

Lemma 25. P=Q = (AxP & AxQ)

Proof. The proof is by induction on the derivation of the derivation of P = Q.

Rule(= Symm): Q@ = P = P = Q. Then by induction we have that Q = P = (AxQ & Ax
P) and hence Ax P & A xQ.

Rule(= Map): P=Q = M[P] = MI[Q]. Then by induction we have(A4 x P < A x @), hence
(Ax M[P] & Ax M[Q)]).

The other cases are routine because of the same data subterms on both sides. O
Lemma 26. Box P,Py—Q = Bx(@

Proof. Reduction does not introduce new subterms, except for (Red Comm) where the result follows
from Box e and Bx Q@ = Bx Q{y\e}, and for (Red =) where the result follows from Lemma
25. (]

To motivate the theorem, assume the data computation A 4—¢ which, by (Red Comm), implies
the process reduction:

le(A) | 2e(x)x =’ g—e=¢

Also assume C x A, so we have C(A)coa—C(e’) by Theorem 22. Hence by (Red Comm):

le(C(A)) | 7e(x).x = C(€)con—C(e) = C(€)

and since C(!¢(A) | ?¢(x).x =€) =le(C(A)) | ?e(x).x = C(€)) and C(e = ¢’) = C(e) = C(e’), we
have:

C(le(A) | Pe(z).x = €")eon—C(e =€)

For this example we have shown that P4—Q = C(P)coa—C(Q). Although P has to be replaced
by C(P) in the shifted frame, the process shape P remains unchanged up to the embedded values.
Moreover the change does not affect data comparisons in that, if the comparison € = €’ succeeds in
A, then the comparison C(g) = C(¢’) succeeds in C o A. This example suggests the statement of the
following theorem.

20 PROCESSES IN SPACE

Theorem 27. Global Frame Shift for Processes
Cx P,P4—Q = C(P)cona—C(Q)

Proof. The proof is by induction on the derivation of P4—Q.

Rule (Red Comm): Ag—e = ,x(A).P+ P” | 7,2(y).Q + Q" 4—P’|Q{y\e}, C x l.h.s.. By
Theorem 22, C «x P’, A g—e = C(A)coa—C(g). Hence, we can produce the following instance of
(Red Comm): 1,z(C(A)).C(P) +C(P”) | 7z(y).C(Q") + C(Q")coa—C(P)|C(Q"){y\C(c)}. Since
C(@){y\C(e)} = C(Q{y\e}), it follows that C(lox(A).P'+P” | 70a(y).Q+Q")coa—C(P’ | Q{y\e}).
Rule (Red Cmp): AaY A’ = (A=, N.Q)4—Q, with C x (A =, A’.Q). By Theorem 22, since
Cx A=, A and Je.A g€ and A’ g—e, we have that Je’ = C(€).C(A)coar—e’ and C(A")coar—¢e’;
hence C(A)coaY C(A’). Therefore, by (Red Cmp) we obtain C(A) =, C(A").C(Q)con—C(Q). Tt
follows that C(A =, A’.Q)coa—C(Q).

Rule (Red Par): P'y—@Q’ = P’ | R4—Q’ | R, with C o« P’ | R. By induction, since C «x P’, we
have C(P’)coa—C(Q’). Hence by (Red Par), C(P’) | C(R)coa—C(Q’) | C(R), that is, C(P’ | R)
COA%C(Q’ | R)

Rule (Red Res): P’4—Q" = (vax)P’'4—(vz)Q’, with C « (va)P’. By induction, since C
P’, we have C(P’)coa—C(Q’). Hence by (Red Res) (vz)C(P’)coa— (vz)C(Q’), that is, C((vx)P’)
coA—C((vr)Q).

Rule (Red =):P = P, P’ ,—Q’,Q’ = Q = P4—Q, with C « P. By Lemma 25, we have C
P,P =P = C x P’. By induction, we have C x P’, P’ y—Q" = C(P)con—C(Q’). By Lemma
24, we have C(P) =C(P’) and C(Q’) = C(Q). Hence, C(P)coa—C(Q) by (Red =). O

The following theorem establishes that barbed congruence is preserved under frame shift.

Theorem 28. Global Frame Shift for Barbed Congruence
CxP,Q,Pa~Q = C(P)coa~C(Q)

Proof. Proof Consider the relation R = {{C(P),C(Q)) | P4 ~ Q}. We show that R is an (Ao C)-
candidate relation. The statement then follows since if P4 ~ @ then C(P)RC(Q) and C(P)40c ~
C(Q). Fact: P |, if and only if C(P) {,.

1) Consider any (C(P),C(Q))in R with P4 ~ Q. If C(P) |, then P |,. Since P4 ~ @ and
P |., we have Q4 |.; that is, 3Q".Q4—=*Q AN Q’ |,. By Theorem 27 and Lemma 26 we have
C(Q)con—*C(Q’). Moreover Q' |, implies C(Q’) |, and hence C(Q)coa .. The converse is

similar.

2) Consider any (C(P),C(Q)) in R with P4 ~ Q. If C(P)coa—P” then, by Theorem 27, C~1(C(P))
c-10coa—C H(P); that is, P4—P’ = C~1(P”). Since P4 ~ @, there is @’ such that Q4 —*Q’
and P’y = @’. Hence, by Theorem 27, there is Q7 = C(Q’) such that C(Q)coa—*Q". Rewrite
P4~ Q as CY(P")4 ~ C1(Q"); then, by definition of R, C(C~*(P”)) R C(C~1(Q")); that
is, P"RQ”. We have shown that if C(P)coa—P” then there is " such that C(Q)coa—*Q” and
P"RQ”. The converse is similar.

3) Consider any (C(P),C(Q))in R with P4 ~ Q. For any observation context I', C~1(I') is an
observation context, and hence we have that C~'(I')[P] 4 ~ C~1(I')[Q]. By definition of R, we then
have that C(C~1(I)[P]) R C(C~1(T)[Q]), that is T[C(P)] R T[C(Q)]. 0

Theorem 29. Relativity (Theorem 13)
G-equations are G-invariant, and hence itnvariant across G.

PROCESSES IN SPACE 21

Proof. Take A € GA(3) and B € G C GA(3), and assume that PV = Q" is a law in A, that
is, PX ~ Q". By Theorem 28, since B < P¥,Q", we have B(PV)BO_A ~ B(Qv). But PV.,Q"
are pure, so we obtain PBVO A~ Qv and hence PV = Qv is a law in B o A. Conversely, assume
PY = Q" is alaw in Bo A, that is PBVOA ~ Q". By Theorem 28, since B~ « P¥,Q", we have
B~1(PY)s-10504 ~ BL(Q"Y). Again, PX ~QV,and PV = Q" is a law in A. We have shown
that G-equations are G-invariant. Assume PY = Qv is a G-equation, and hence G-invariant, and
take 4,8 € G. If P = Q" is a law in A then, since Bo A~! € G, it is also a law in Bo A1 o A

by definition of G-invariance, and hence it is a law in B. We have shown that G-equations are
invariant across G. (]

